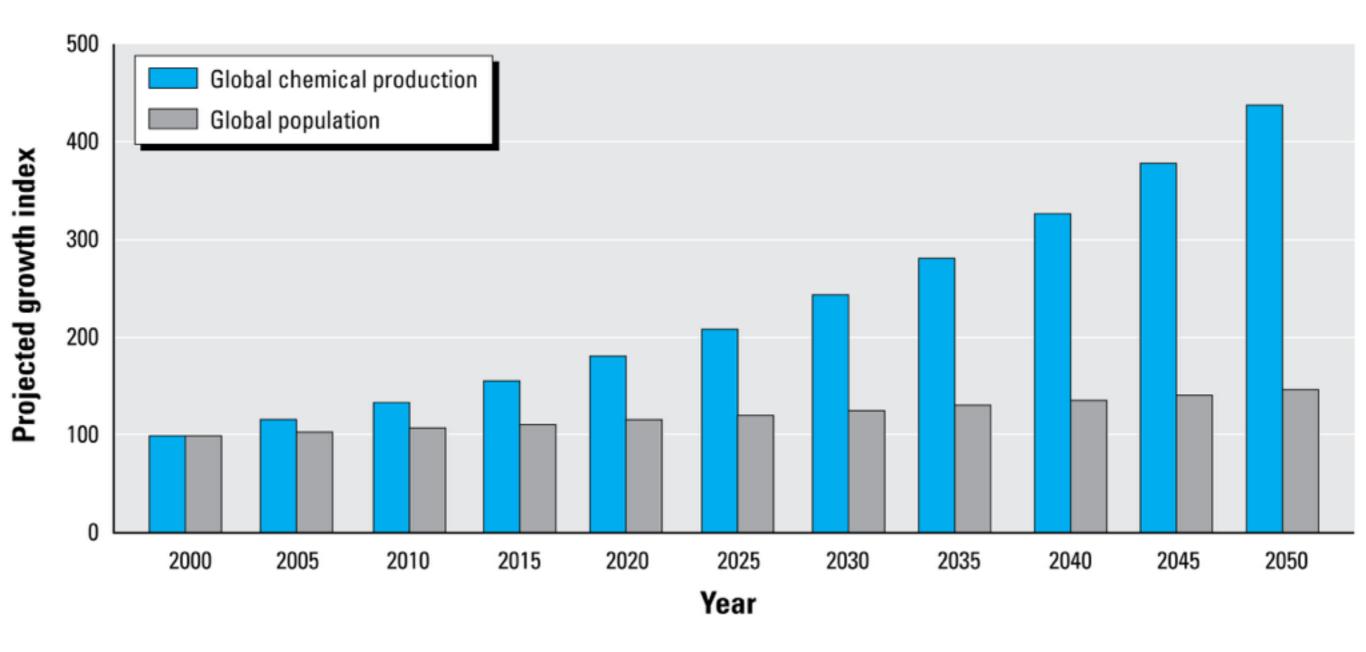
## Knowledge commons for green chemistry

Collective solutions to information challenges in the substitution of hazardous chemicals

### Akos Kokai & Alastair Iles


Berkeley Center for Green Chemistry Department of Environmental Science, Policy, and Management University of California, Berkeley



#### **Pacifichem**

Honolulu, Hawai'i - 02015-12-19





Wilson, M. P., & Schwarzman, M. R. (2009). Toward a New U.S. Chemicals Policy: Rebuilding the Foundation to Advance New Science, Green Chemistry and Environmental Health. *Environmental Health Perspectives*, 117(8), 1202–1209. http://doi.org/10.1289/ehp.0800404



Image: CDC



# GREEN CHEMISTRY



Green chemistry is an approach to chemistry that aims to maximize efficiency and minimize hazardous effects on human health and the environment. While no reaction can be perfectly 'green', the overall negative impact of chemistry research and the chemical industry can be reduced by implementing the 12 Principles of Green Chemistry wherever possible.

#### 1. WASTE PREVENTION



Prioritize the prevention of waste, rather than cleaning up and treating waste after it has been created. Plan ahead to minimize waste at



Use chemicals which are made from renewable (i.e. plant-based) sources, rather than other, equivalent chemicals originating from petrochemical sources.

#### 2. ATOM ECONOMY

#### 8. REDUCE DERIVATIVES



Reduce waste at the molecular level by maximizing the number of atoms from all reagents that are incorporated into the final product. Use atom economy to evaluate reaction efficiency.



Minimize the use of temporary derivatives such as protecting groups. Avoid derivatives to reduce reaction steps, resources required, and waste created.

#### 3. LESS HAZARDOUS CHEMICAL SYNTHESIS

#### 9. CATALYSIS



Design chemical reactions and synthetic routes to be as safe as possible. Consider the hazards of all substances handled during the reaction, including waste.



Use catalytic instead of stoichiometric reagents in reactions. Choose catalysts to help increase selectivity, minimize waste, and reduce reaction times and energy demands.

#### 4. DESIGNING SAFER CHEMICALS

#### 10. DESIGN FOR DEGRADATION



Minimize toxicity directly by molecular design, Predict and evaluate aspects such as physical properties, toxicity, and environmental fate throughout the design process.



Design chemicals that degrade and can be discarded easily. Ensure that both chemicals and their degradation products are not toxic, bioaccumulative, or environmentally persistent.

#### 5. SAFER SOLVENTS & AUXILIARIES

#### 11. REAL-TIME POLLUTION PREVENTION



Choose the safest solvent available for any given step. Minimize the total amount of solvents and auxiliary substances used, as these make up a large percentage of the total waste created.



Monitor chemical reactions in real-time as they occur to prevent the formation and release of any potentially hazardous and polluting substances.

#### 6. DESIGN FOR ENERGY EFFICIENCY

#### 12. SAFER CHEMISTRY FOR ACCIDENT PREVENTION



Choose the least energy-intensive chemical route. Avoid heating and cooling, as well as pressurized and vacuum conditions (i.e. ambient temperature & pressure are optimal).



Choose and develop chemical procedures that are safer and inherently minimize the risk of accidents. Know the possible risks and assess them beforehand.







Green technological design should be informed by scientific knowledge of the environmental heath effects of chemicals and materials.

### Knowledge as a resource for decision-making

- Understanding and assessing the hazards of existing and "safer" technologies.
- Guiding innovation and new solutions in technology and design.
- Informing and legitimizing action, including regulation, business strategy, activism, and individual choices.

### Collective action for sustainability

- Scientific research
- Industry innovation
- Public policy
- Civil society



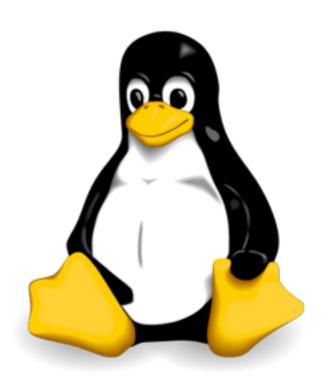
How can we better mobilize scientific knowledge to advance green chemistry?

Knowledge commons definition and examples

Challenges in mobilizing knowledge

Framework for analyzing knowledge commons in green chemistry

### Knowledge commons definition and examples


Challenges in mobilizing knowledge

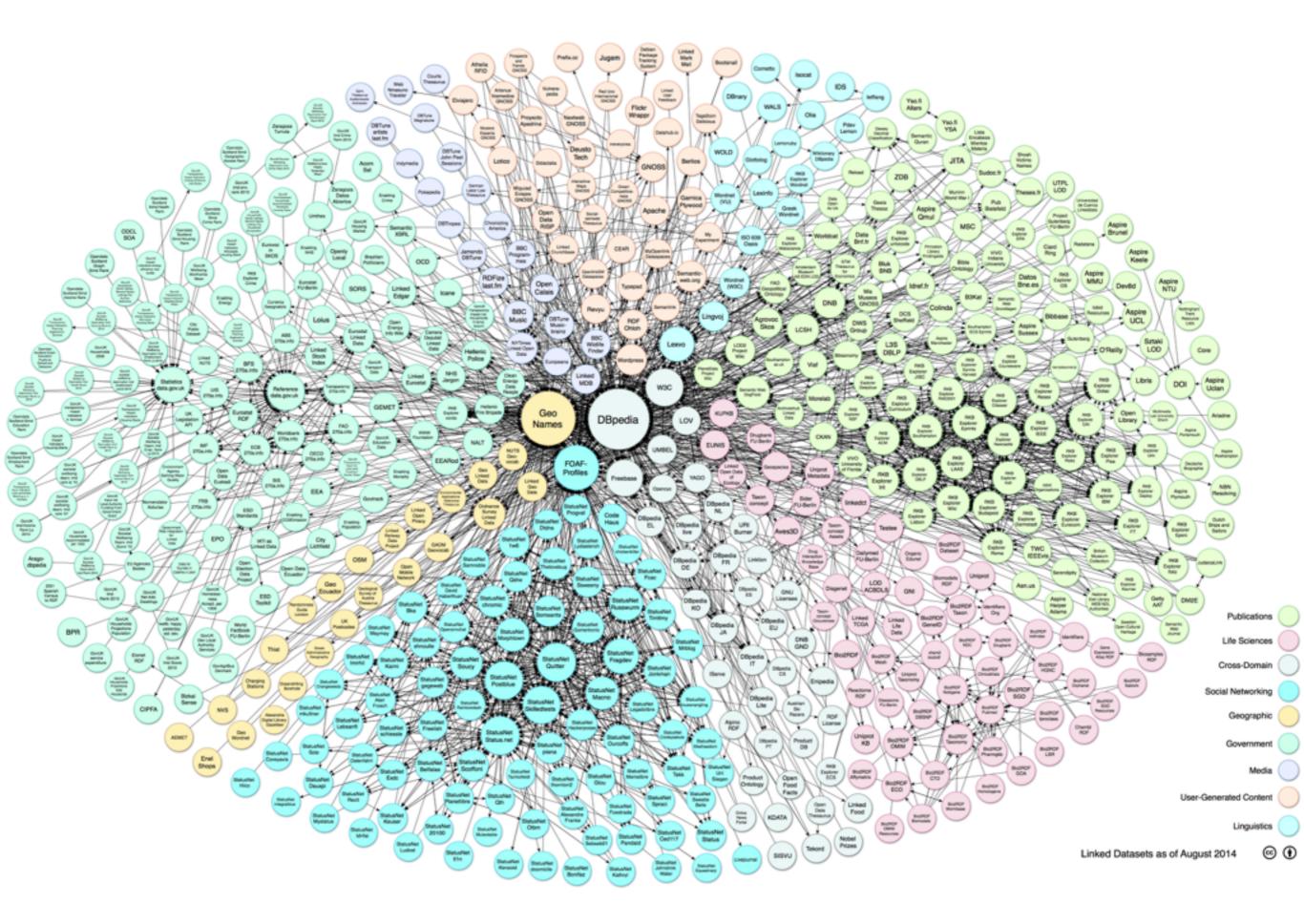
Framework for analyzing knowledge commons in green chemistry

## What is a commons?

- A pattern of institutional arrangements for sharing and co-producing resources among a community.
- Not just resources: rules, infrastructures, social and technical systems.
- Not synonymous with "open access", "free", etc.
- Governance manages social dilemmas and reduces obstacles to sharing.

#### Knowledge commons




Free & open-source software

"Tux" by Larry Ewing, Simon Budig, & Anja Gerwinski

- Open science
- · Open data, open knowledge, ...



The Wikimedia Foundation [CC BY-SA]

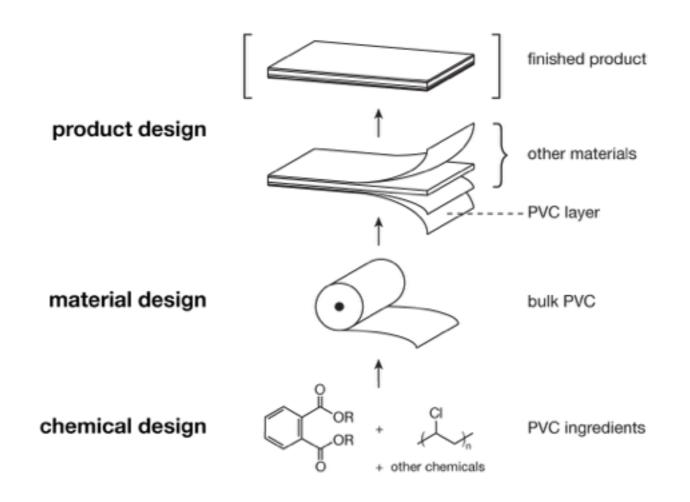


Knowledge commons definition and examples

### Challenges in mobilizing knowledge

Framework for analyzing knowledge commons in green chemistry

Technical, social, and political challenges in the mobilization of scientific knowledge are obstacles to advancing green chemistry.


### Challenges in mobilizing knowledge

## Data gaps

- Availability: Large proportion of chemicals have not been tested for safety.
  - There are many health effects that require different tests.
- Accessibility: Restrictions and data 'silos'.
  - IP inhibits access to scientific data, even 'published'.
  - Limitations of public domain data infrastructures.

### Challenges in mobilizing knowledge

## Communication of hazard information



Multiple levels of design and decision-making

Complex, global supply systems

Inadequate flow of information

Information asymmetries

Massey, R. (2008). Sharing knowledge about chemicals: policy options for facilitating information flow. Lowell Center for Sustainable Production. <a href="http://www.chemicalspolicy.org/downloads/OptionsforStateChemicalsPolicyReform.pdf">http://www.chemicalspolicy.org/downloads/OptionsforStateChemicalsPolicyReform.pdf</a>
Scruggs, C. E., & Ortolano, L. (2011). Creating safer consumer products: the information challenges companies face. 
Environmental Science & Policy, 14(6), 605–614. <a href="http://doi.org/10.1016/j.envsci.2011.05.010">http://doi.org/10.1016/j.envsci.2011.05.010</a>
Scruggs, C. E., Ortolano, L., Schwarzman, M. R., & Wilson, M. P. (2014). The role of chemical policy in improving supply chain knowledge and product safety. JESS, 4(2), 132–141. <a href="http://doi.org/10.1007/s13412-013-0158-4">http://doi.org/10.1007/s13412-013-0158-4</a>

### Challenges in mobilizing knowledge

## Uncertainty and contestation

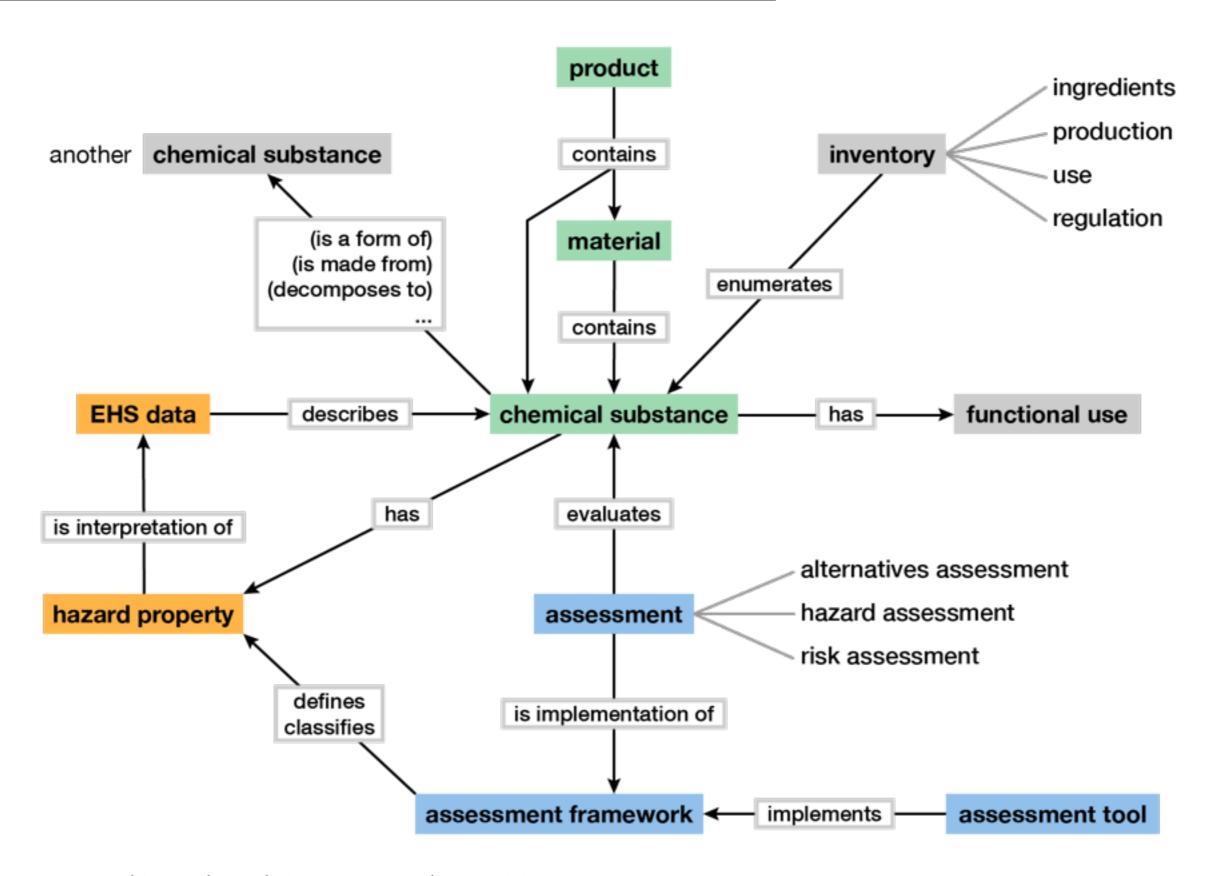
- Interpretation of scientific evidence:
   e.g., low-dose effects of endocrine disruptors.
- Conventions: Standards of safety, risk, etc.
- Paradigms: Definition of green chemistry, "sustainability", ...

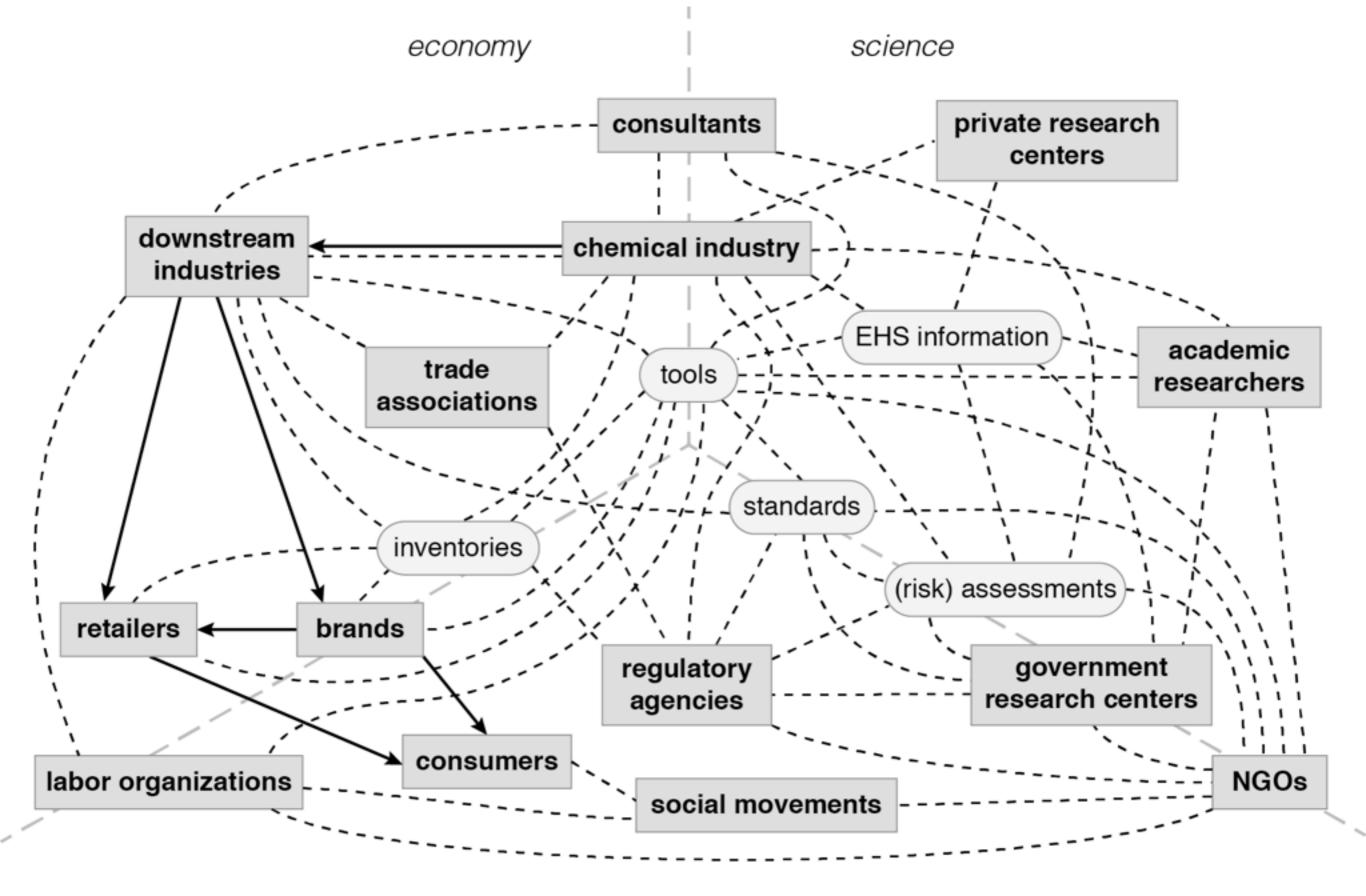
Jasanoff, S. (1990). The fifth branch: science advisers as policymakers. Cambridge, Mass.: Harvard University Press. Sarewitz, D. (2004). How science makes environmental controversies worse. Environmental Science & Policy, 7(5), 385–403. <a href="http://doi.org/10.1016/j.envsci.2004.06.001">http://doi.org/10.1016/j.envsci.2004.06.001</a>

Knowledge commons definition and examples

Challenges in mobilizing knowledge

Framework for analyzing knowledge commons in green chemistry


## Knowledge systems perspective


The set of actors involved in knowledge activities that contribute to the governance of chemicals, and the flows of information among them.

### Types of knowledge resources

- EHS information: properties of chemicals
- Inventories: lists of chemicals
- · Standards: including assessment frameworks
- Tools: to simplify knowledge tasks
- Assessments: knowledge for making decisions

### Partial ontology of chemical hazard information

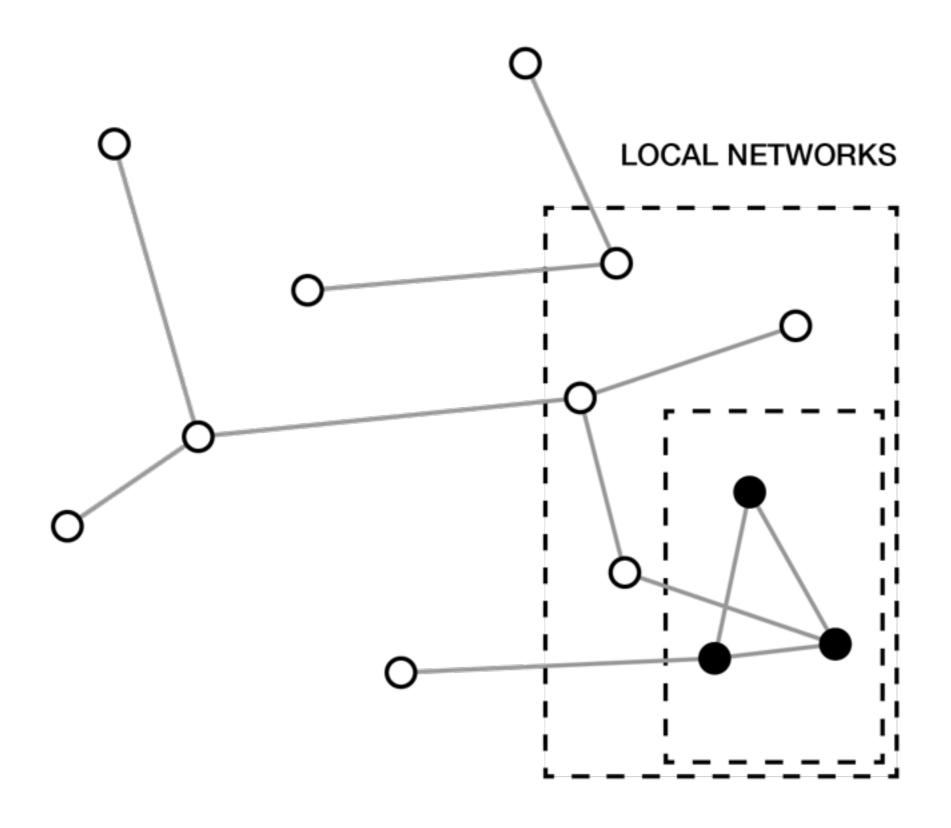




policy & governance

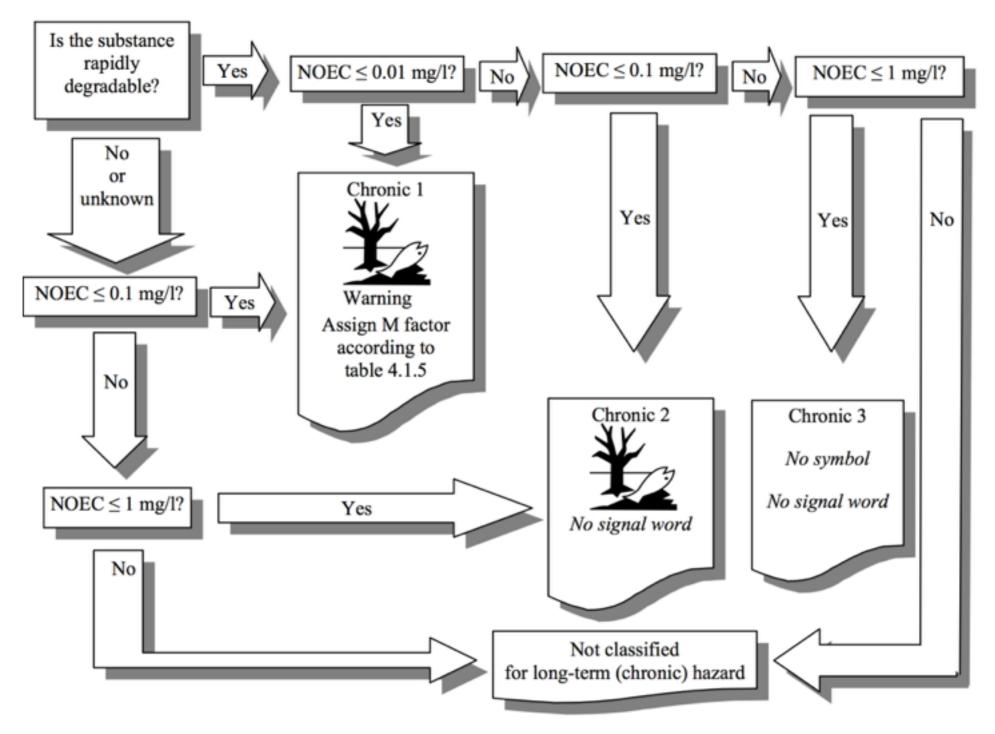
Inspired by: McCullough, E. B., & Matson, P. A. (2011). Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico. *PNAS*. <a href="http://doi.org/10.1073/pnas.1011602108">http://doi.org/10.1073/pnas.1011602108</a>

## New features of knowledge production?


- Participatory modes of production and validation, involving multiple communities & stakeholder groups.
- Multi-directional flows of information.
- Diversified expert groups: "extended peer review."
- Transparency of knowledge resources.

Nowotny, H., Scott, P., & Gibbons, M. (2001). Re-thinking science: knowledge and the public in an age of uncertainty. Cambridge, UK: Polity.

How do knowledge commons shape the production and validation of knowledge about chemicals and environmental health?


We can identify cases of knowledge commons among green chemistry efforts.

### GLOBAL KNOWLEDGE COMMONS



#### Case: Alternatives assessment

4.1.5.2.2 Decision logic 4.1.3 (b) for substances (when adequate chronic toxicity data are available for all three trophic levels)<sup>5</sup>



UNECE. (2015). Globally harmonized system of classification and labelling of chemicals (GHS) (6th Revised Edition). http://www.unece.org/trans/danger/publi/ghs/ghs\_rev06/06files\_e.html

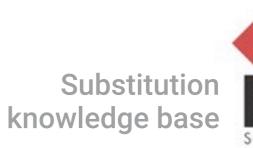
### Case: Alternatives assessment

|                                  | Information Type                                        | Measurement                                                                                       |                                | Very High (vH)                                                                                                                                                       | High (H)       | Moderate (M)        | Low (L)                                         |                                             |
|----------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-------------------------------------------------|---------------------------------------------|
| l <del>s</del> [                 | Data                                                    | GHS Criteria & Guidance                                                                           |                                | GHS Category 1                                                                                                                                                       | GHS Category 2 | GHS Category 3      | Sufficient data available<br>and not classified |                                             |
| Toxicity                         | Guidance Values (see<br>GHS for further<br>information) | LC <sub>so</sub> or EC <sub>so</sub> (mg/L)                                                       |                                | <b>≤1</b>                                                                                                                                                            | >1 to 10       | > 10 to 100         | >100                                            |                                             |
| Aquatic<br>(AA)                  | A Lists                                                 | DSL.                                                                                              | Screening                      | IT non-human Note: Could be based on acute or ofmone aquatic toxinity. Only assess here if the classification is based on acute aquatic toxicity.                    |                |                     |                                                 |                                             |
|                                  |                                                         | EU H-statements<br>EU R-phrases                                                                   | Authoritative<br>Authoritative | H400<br>R50                                                                                                                                                          | R51/53         | R52/53              |                                                 |                                             |
| Acute                            |                                                         | GHS-[COUNTRY]* Lists                                                                              | Screening                      | Category 1                                                                                                                                                           | Category 2     | Category 3          | "Not Classified"                                |                                             |
| $\Box$                           | B Lists                                                 | EU R-phrases                                                                                      | Authoritative                  | R51 or R52                                                                                                                                                           |                | R52                 |                                                 |                                             |
| <b>&gt;</b>                      | Information Type                                        | Measurement                                                                                       |                                | Very High (vH)                                                                                                                                                       | High (H)       | Moderate (M)        | Low (L)                                         |                                             |
| [芸]                              | Data                                                    | GHS Criteria & Guidance                                                                           |                                |                                                                                                                                                                      |                | GHS Category 4      |                                                 |                                             |
| ŀ≜ ŀ                             |                                                         | Guidance Value (mg/L)                                                                             |                                | ≤0.1                                                                                                                                                                 | >0.1 to 1.0    | > 1.0 to 10         | >10                                             |                                             |
| Aquatic Toxicity (CA)            | A Lists                                                 | DSL.                                                                                              | Screening                      | IT non-human<br>Note: Could be based on acute<br>or chronic aquatic toxicity. Only<br>assess here if the classification<br>is based on chronic aquatic<br>foolicity. |                |                     |                                                 |                                             |
| quati<br>(CA)                    |                                                         | EU H-statements                                                                                   | Authoritative                  |                                                                                                                                                                      |                | H413                |                                                 |                                             |
| 당의                               |                                                         | EU R-phrases                                                                                      | Authoritative                  |                                                                                                                                                                      |                | R53                 |                                                 |                                             |
|                                  |                                                         | GHS-(COUNTRY)* Lists<br>(*Korea, Japan, Indonesia, Australia,<br>Europe, New Zealand, and Taiwan) | Screening                      |                                                                                                                                                                      |                | Category 4          |                                                 |                                             |
| Chronic                          | B Lists                                                 | DSL.                                                                                              | Screening                      | iT non-human<br>Note: Could be based on acute<br>or chronic aquatic toxicity. Only<br>assess here if the classification<br>is based on chronic aquatic<br>toxicity.  |                |                     |                                                 |                                             |
|                                  | Information Type                                        | Media & Measurement                                                                               | List Type                      | Very High (vH)                                                                                                                                                       | High (H)       | Moderate (M)        | Low (L)                                         | Very Low (vL)                               |
| <u> </u>                         | Data                                                    | Soil or Sediment                                                                                  |                                | >180 or recalcitrant                                                                                                                                                 | >60 to 180     | 16 to 60            | < 16 OR GHS "Rapid<br>degradability"            | Meets 10-day window<br>in "Ready            |
| %                                |                                                         | (1/2 life in days OR Result)                                                                      |                                |                                                                                                                                                                      |                |                     | oogradaaniy                                     | Biodegradation Test*<br>Meets 10-day window |
| euce                             |                                                         | Water<br>(1/2 life in days OR Result)                                                             |                                | > 60 or recalcitrant                                                                                                                                                 | > 40 to 60     | 16 to 40            | < 16 OR GHS "Rapid<br>degradability"            | in "Ready<br>Biodegradation Test"           |
| Persiste                         |                                                         | Air<br>(1/2 life in days OR Result)                                                               |                                | > 5 or recalcitrant                                                                                                                                                  | >2 to 5        |                     | < 2                                             |                                             |
| Pe                               |                                                         | Long-Range Environmental<br>Transport                                                             |                                |                                                                                                                                                                      | Evidence       | Suggestive Evidence |                                                 |                                             |
|                                  |                                                         | DSL                                                                                               | Screening                      |                                                                                                                                                                      | sistent (P)    |                     |                                                 |                                             |
| c I                              | Information Type                                        | Measurement                                                                                       |                                | Very High (vH)                                                                                                                                                       | High (H)       | Moderate (M)        | Low (L)                                         | Very Low (vL)                               |
| latio<br>(B)                     | Data                                                    | BAF<br>(Bioaccumulation Factor)                                                                   |                                | > 5000                                                                                                                                                               | > 1000 to 5000 | > 500 to 1000       | > 100 to 500                                    | ≤ 100                                       |
| a di                             |                                                         | BCF<br>(Bioconcentration Factor)                                                                  |                                | > 5000                                                                                                                                                               | > 1000 to 5000 | > 500 to 1000       | > 100 to 500                                    | ≤ 100                                       |
| Bioaccumulation<br>Potential (B) |                                                         | Log Kow<br>(Log octanol-water partition<br>coefficient )                                          |                                | > 5.0                                                                                                                                                                | > 4.5 to 5.0   | > 4.0 to 4.5        |                                                 | ≤4                                          |
|                                  |                                                         | Monitoring Data<br>(Presence in humans or wildlife)                                               |                                |                                                                                                                                                                      | Evidence       | Suggestive Evidence |                                                 |                                             |
| ᄣᇿ                               |                                                         | DSL                                                                                               |                                | Bioaccumulative (B)                                                                                                                                                  |                |                     |                                                 |                                             |



## **GHS**

Hazard classification system



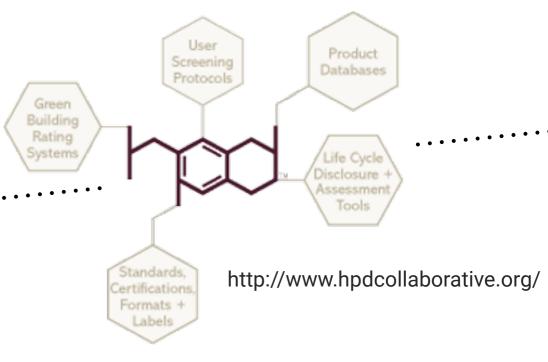

Chemical & product safety standard



Comparative chemical hazard assessment framework

http://www.greenscreenchemicals.org/






http://www.subsport.eu/



https://www.pharosproject.net/

Chemical hazard assessment database & Product selection tool



Product ingredient disclosure open standard

## Goals of knowledge commons in green chemistry

- Make the work more effective, efficient.
- Build consensus and momentum toward solutions.
- Correct information asymmetries in the chemicals market and downstream industry markets by institutionalizing transparency.
  - While also protecting private knowledge.

## Commons and the mobilization of knowledge

| Maj | or knowled | ge challenge: | s Commons | innovations |
|-----|------------|---------------|-----------|-------------|
|     |            |               |           |             |

Knowledge gaps Increase access

Inadequate information flows Multi-directional flows

Uncertainty and contestation Transparency and participation

The commons presents opportunities for mutual benefit across society in overcoming barriers to sustainable transformation.

### Mahalo nui loa

- National Science Foundation
  - "Systems Approach to Green Energy" (SAGE) integrative graduate traineeship



- Berkeley Center for Green Chemistry
  - http://bcgc.berkeley.edu/
- Department of Environmental Science, Policy, and Management (ESPM), UC Berkeley



